
Max-Planck-Institut für demografische Forschung
Max Planck Institute for Demographic Research
Konrad-Zuse-Strasse 1 · D-18057 Rostock · GERMANY
Tel +49 (0) 3 81 20 81 - 0; Fax +49 (0) 3 81 20 81 - 202; 
http://www.demogr.mpg.de

This working paper has been approved for release by: James W. Vaupel (jwv@demogr.mpg.de)
Head of the Laboratory of Survival and Longevity.

© Copyright is held by the authors.

Working papers of the Max Planck Institute for Demographic Research receive only limited review.
Views or opinions expressed in working papers are attributable to the authors and do not necessarily
reflect those of the Institute.

Inverse problems in demography 
and biodemography

MPIDR WORKING PAPER WP 2006-041
NOVEMBER 2006

Anatoli Michalski (mpoctok@narod.ru)



Inverse Problems in Demography and Biodemography 

Anatoli Michalski 

Institute of Control Sciences RAS, 117997, Profsoyuznaya 65, Moscow,  

Russian Federation 

(email: mpoctok@narod.ru) 

and 

The Max Plank Institute for Demographic Research, 

Rostock, Germany 

 

Abstract 

Inverse problems play important role in science and engineering. Estimation of boundary 

conditions on the temperature distribution inside a metallurgical furnace, reconstruction 

of tissue density inside body on plane projections obtained with x-rays are examples. The 

similar problems exist in demography in the form of projection and estimation of 

population age distributions and age-specific mortality rates. The problem of residual 

demography is estimation of demographic process in wild nature on its manifestation in 

marked subjects with unobserved age, which again is inverse problem. The article 

presents examples and the ways of solution the inverse problems in demography and 

biodemography, discusses the ways of improving results by combination of demographic 

and genetic data. 
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1 Introduction 

In many fields of science and engineering a necessity exists to estimate a process 

using observations from another related with the estimated process. Depending on the 

problem setting it can be estimation of a signal in the presence of noise, numerical 

calculation of derivative, calculation of boundary conditions on the values of temperature 

distribution inside metallurgical furnace, reconstruction of tissue density inside body on 

plane projections obtained with x-rays. In nontechnical science similar problems arise in 

epidemiology, when a disease prevalence (proportion of sick people in different age 

groups) can be obtained but incidence rate (probability of healthy person to become sick 

during say one year) is to be estimated. In demography calculation of mortality rates form 

similar problem. Proportion of survived people is observed but chances to die during one 

year are of primer interest. In population projection and analysis we meet the same 

situation when one observes the population structure or some health related index at fixed 

years but is interesting in age structure or health related index levels at other not observed 

years. 

All these problems form a class of mathematical problems called inverse 

problems contrary to forward problems when the estimation process follows cause-effect 

line. In this terms calculation of time graphic for distance covered by car using its 

velocity is forward problem but estimation the velocity using time graphic for distance in 



inverse problem. Many important for practice inverse problems have solution which is 

very sensitive to disturbance in data. The example with velocity estimation is well known 

in technical applications where enormous efforts are applied to stabilize this kind of 

estimates using special frequency filters, time averaging or spline smoothing.  

The same problem with solution sensitivity exists in inverse problems in 

epidemiology, demography, biodemography. Variations in data arise because of 

probabilistic nature of the process and limited number of observed people.  The first 

means that the process can be attained only by its realizations in population in form of 

proportion of people in the defined states. The second means that these proportions differ 

from the probabilities. In the result one has extremely large changes in the estimates even 

when amount of data increases. 

Formal consideration of inverse problems and procedures for solution 

stabilization is given in the next section. Examples of inverse problems from 

epidemiology (AIDS/HIV epidemic), demography (population dynamic), biodemography 

(estimation in wild on observations in laboratory) are given in section 3. Possible 

solutions for demography and biodemography problems are presented in sections 4 and 5. 

Section 6 contains discussion of possibility to improve the precision of estimates 

combining demographic and genetic data, section 7 contains conclusion. 

 

2 Formal definition of inverse problem 

In formal terms inverse problem is a problem of solution of an operator equation 

yAx =       (1) 



where A  is a bounded linear operator between infinite dimensional functional Hilbert 

spaces X and Y, x and y are elements from these spaces. Function y plays role of 

“observations” or “effect”, function x plays role of “cause” produced observed effect. It is 

supposed that operator A makes one to one mapping between spaces X and Y. The 

solution of equation (1) is a function, defined as 

yAx 1−=      

where 1−A  is inverse to A  operator which is linear as well. It is proved that if the range 

( )AR   for A  is non-closed, then operator 1−A  is unbounded (Tikhonov and Arsenin, 

1977; Engl et al., 1996). The latter means that if one substitutes a “disturbed” function 

Yy ∈δ  such that δδ ≤− yy  in (1) then the disturbance in corresponding solution 

δyAx 1−−  may infinite. Here x  denotes the norm of x. More precisely: let nδ  be a set 

of nonnegative values tending to zero with n tending to infinity. For any small value δ  

and any large value ∆  exists a function Yy ∈∆
δ such that δδ ≤− ∆yy  and 

∆>− ∆
− δyAx 1 .  

To illustrate this fundamental property consider an integral equation for [ ]1,0∈t  
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0

ττ      (2) 

with linear bounded operator. The inverse operator is the operator of differentiation and 
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It is obvious that 00 →− →ω
ωyy  while ∞ →− →0ω

ωxx . This means that for any 

small value δ  and any large value ∆  can be found small enough value ω  such that 

δω ≤− yy  and ∆>− ωxx . 

The formulated property of inverse operator make impossible to guarantee that 

solution found on disturbed data will be close to solution, corresponding to undisturebed 

data. To make the inverse operator to be bounded one needs to make range ( )AR   for A  

to be closed. This can be done by reducing the dimension of functional spaces X and Y to 

finite values which corresponds to parameterization of functions x and y (in space of 

finite dimension linear nonsingular operator has bounded inverse operator) or by 

applying additional restrictions on solution of (1). In the case of example (2) this can be 

restriction on the maximum value of the first derivative of the solution. More methods 

and formal proves can be found in (Morozov, 1993). 

The general approach to solution of equations with unbounded inverse operator, 

called ill-posed equations, is formulated in Tikhonov and Arsenin (1977) as minimization 

of regularized functional ( ) 22
BxyAxxJ αδ

α +−= , where 0>α  is a regularization 

parameter,  B  is unbounded operator defined at functional set ( ) XB ⊆D  such that 

XBx ⊆ . Minimization is to be done in ( )BD  - the region of definition of operator B . 

The problem of proper selection of regularization parameter value is widely discussed in 

literature. For special case sDB = , where D  is a differential operator and s is some 



nonnegative real number, Natterer (1984) has shown that under the assumptions 

EyAD p ≤−1  and xDMAxxDm αα −− ≤≤  with some constants E, m and M, 

regularized solution αx  provides approximation of the real solution with bound 

( )( )ppOyAx +− =− α
α δ /1  for ( ) 2/α−≥ ps  if α is chosen priory as ( ) ( )psc ++= ααδα /2  

with some constant c. Posterior selection of regularization parameter can be done using 

Morozov’s discrepancy principle (Morozov, 1993) which prescribes to select parameter α 

as solution of the equation δδ
α CyAx =− , where 1≥C  is a constant. The efficiency of 

this approach has been proved in many applications (Nair et al., 2003; 2005). Procedures 

of regularization parameter selection in case of stochastic disturbances in δy  are 

considered in Michalski (1987), Lukas (1998), Engl et al. (2005).  

 

3 Examples of inverse problems in epidemiology, demography and 

biodemography 

Specific operator equations arise in consideration of estimation problems in 

epidemiology, demography and biodemography. We will describe the problems of 

estimation the number of HIV infected on dynamics of AIDS cases (epidemiology), 

forward and back projection of population structure and population health related indexes 

(demography), reconstruction of survival in wild on survival of captured animals in 

laboratory (residual demography). 

 

Epidemiology 



In epidemiology event of infection causes with some probability event of the 

disease development which in turn with some probability causes the diagnoses 

establishing. If the time lags between these three events are not large and the probabilities 

are not small then the dynamics of the disease diagnosed cases reflects the infection 

process. This is not a case of HIV/AIDS epidemic. The lag between HIV infection and 

AIDS manifestation (incubation period) is reported to last up to 15 years. There are some 

evidence that the shorter the incubation period is the more amount of virus was 

transmitted in the blood. Cases of HIV infection at young ages are characterized by 

enlargement of incubation period (Gigli and Verdecchia, 2000). These conditions make 

epidemic HIV/AIDS not only specific in terms of demographic consequences but to be 

difficult for monitoring and control. Better understanding of HIV/AIDS epidemics can be 

gained using inverse problems approach. Denote ( )xt,ψ  HIV infection rate at age x in 

time t, ( )xtc ,µ  total mortality at age x in time t, ( )sxL ,  probability density function to 

develop AIDS at age x being infected wit HIV at age s, ( )xtu ,  prevalence of diagnosed 

AIDS cases at age x in time t. The relationship between AIDS prevalence and HIV 

infection rate is given by 

( ) ( ) ( ) ( )∫ ∫ +−









+−−=

x x

s

c dsssxtdxtstLxtu
0

,,exp,, ψτττµ  

which is integral equation in respect to ( )xt,ψ . Obtaining estimates for ( )xt,ψ  one can 

calculate the total number of HIV infected in population, prevalence of HIV positive 

people by age groups, age and time trends in HIV infection process. More details and 

examples can be found in Michalski (2005). 

 



Demography 

Population projections are based on current population structure, projections of 

mortality and birth rates, scenarios of in and out migration. One can skips birth rates by 

projecting cohort dynamics, but mortality rates are to be estimated on numbers of deaths 

and numbers of alive people. The estimate for age-specific mortality rate used in  

demography is 
xt

xt
xt n

d
m = , where xtd - number of deaths in age group x in year y, xtn - 

number of people alive in age group x in the beginning of year y. Because of small 

number of people alive in advanced age groups the estimate xtm  has high variance and is 

to be improved by application additional data and approaches. One possibility is to 

consider mortality as solution of integral equation  

( ) ( ) ( )∫ ∫ 












−−=

x y

dydyxS
0 0

exp1 ττµµ ,     (3) 

which follows from consideration of two-states Semi-Markov model with one state 

“alive”, the other state “deceased”, rate of transition from the first state to the second one 

( )yµ  and probability to stay in the “alive” state – survival function ( )xS .  Solution of 

equation (3) is equivalent to calculation of logarithmic derivative ( ) ( )xS
dt

d
x ln−=µ  

which means that (3) has unstable solution. One possibility to reduce instability is proper 

parameterization of mortality as is done in Lee and Carter (1992). 

Similar to (3) equation with unstable solution emerges in estimation of cohort 

gradients in population characteristics, say in risk factors, health related indicators. 

Denote ( )txh ,  a value for an indicator at age x and time t, ( )txg ,  a value of cohort 



gradient in health indicator at age x and time t. Relationship between ( )txh ,  and ( )txg ,  is 

given by cohort dynamic equation  

( ) ( ) ( )∫
−

+++=
0

0

0000 ,,,
xx

dtxgtxhtxh τττ .  

Effective way of this equation solution using data from cross-sectional surveys is 

presented in Moltchanov et al. (2005). 

 

Survival in the  wild 

Muller et al. (2004) formulated a problem of investigation the survival in flies 

living in wild on the observation of survival in flies captured at unknown age and kept in 

laboratory. This direction in demography is entitled residual demography. The 

experiment setting is as follows. A flies in wild are captured at random and put in 

laboratory where the captured cohort is observed and proportion of survivors till day x 

after capture ( )xPc  is calculated. At the same time a cohort of flies is reared from fruits, 

collected in the same region where the flies were captured. This cohort has known age 

and is called a reference cohort. Survival ( )xSr  observed in this cohort is reference 

survival, reflecting survival in laboratory conditions, while in captured cohort function 

( )xPc  is not survival because of unknown age at capture. The problem is how to estimate 

survival in wild nature ( )xSw  using functions ( )xSr  and ( )xPc .  

This is typical inverse problem where survival in wild ( )xSw  causes proportion of 

survivors among captured flies ( )xPc . Probability for a fly captured at age a to survive in 



laboratory x days is { } ( ) ( )aSxaSaxXP rr /| +=> , where X is life span in laboratory.  

Probability for a fly captured random to survive in laboratory x days is  

 { } { }( ) ( )
( ) ( )daap
aS

xaS
axXPExXP w

r

r
a ∫

+
=>=>

ω

0

|  

where ( )apw  denotes probability for a wild fly to be captured at age interval [ ]daaa +, .  

In the case of stationary wild population ( ) ( )aS
e

ap ww
0

1=  and  

( ) ( )
( ) ( )daaS
aS

axS

e
xP w

r

r
c ∫

+
=

ω

00

1
,      (4) 

where 0e  is life expectancy at birth in wild. Equation (4) is typical convolution equation 

with kernel function ( ) ( ) ( )aSaxSaxK rr /, += .  

 

4 Lee-Carter Method and Dynamic Regression Method 

Demographers want to predict age structure of population as in future so in the 

past. The first case is prognosis for planning while the second case is for interest of 

historical demography. Lee and Carter (1992) proposed to use for mortality forecasting 

presentation ( )txxxt kbam += exp , which is a decomposition of mortality at age effect 

and at time effect. Estimates for vectors ax, bx and kt  are obtained by minimization least 

square error between model and given data 
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or weighted least square error 
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The estimates can be obtained by iterating the three expressions Wilmoth (1993) 

∑
∑ 













−








=

t
tx

xt

xt
xt

t
xt

x kb
n

d
d

d
a

))

)

ln
1

,  

∑
∑ 













−








=

t
x

xt

xt
txt

t
txt

x a
n

d
kd

kd
b

)

)

)

)

ln
1

2
, 

∑
∑ 













−








=

t
x

xt

xt
txt

t
txt

x a
n

d
bd

bd
k

)

)

)

)

ln
1

2
 

starting from the proper guess values.  

Some modifications of the Lee-Carter method for inverse projection of population 

structure, age distribution of death, reproduction patterns are presented in Barbi et al. 

(2004). Among them are differential inverse projection, based on separation of mortality 

on child and adult mortality. In this case probability of dying by age is presented as 







>
≤

=
4

4
2

1

0

0

xkq

xkq
q

txt

txt
xt , 

where xtq  - probability of dying in year t, 
0xtq  - probability of dying in reference year t0, 

1
tk  and 2

tk  are age group specific tome effects. A stochastic inverse projection is 

described in Barbi et al. (2004) in form 

( ) ( ) ( )txMtxNtxN ,1,1, +++= , 



where ( )txN ,  is distribution of population by age x in year t, ( )txM ,  is distribution of 

deaths by age x in year interval (t,t+1), which is calculated by simulation of death events 

with probability 

( )
( ) ( )[ ] ( )
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utxNtxSV
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where ( )txSV ,  is the random total number of survivors of age  x at time t, simulated with 

the program from the time series of the people born from year ( )2,1 +−+− ωω tt  to year 

( )tt ,1−  by surviving functions induced by the mortality rates ( )tx,µ . Probability for a 

person born at time t-y  to survive a period y+u is denoted as ( )uy +π . In the formula 

quantity u denotes a set of times tru ∆=  with ( ) 1,...,1* −= tMr  and ( )tM *  equals to 

number of individuals, who died in the interval (t,t+1). 

The Lee-Carter method and its modifications explore population dynamics and 

uses parametric by time presentation for mortality. Many related to population health 

indices (risk factors) can not be presented in parametric form but should be reconstructed 

nonparametrically as a function of age and time. This can be done by Method of Dynamic 

Regression (Moltchanov et al., 2005) in which cohort dynamics of the indicator is given 

by equation  

 ( ) ( ) ( )∫
−

+++=
0

0

0000 ,,,
xx

dtxgtxhtxh τττ ,    (5) 

where ( )txh ,  is a level of an indicator at age x and time t, ( )txg ,  is a value of cohort 

gradient for the indicator at age x and time t, ( )00 , tx  - initial point of the cohort 

observation. To formulate the problem in discrete time and age a supposition is made that 



the cohort gradient ( )txg ,  takes constant value writhing the parallelogram 

{ }ijtxijtititx −+≤<−−++<≤= 1,1:,ijP  and level ( )txh ,  takes constant value by 

age x writhing the same parallelogram. With proper indexing equation (5) takes form 

( ) ( ) ( ) ( )itjigjihtxh −×+= ,,, . Denote kh level of the index observed at the point ( )kk tx ,  

and present it in form using (5) for the cohort, which at time kt  was kx  years old 

( ) ( ) kijk
m

k
ok gitmjmighh

k

ε
δ

+×−+−−+= ∑
=1

,    (6) 

where kh0  - initial level, corresponding to the beginning of the cohort observation, kδ  - 

number of years between kt  and 0t  , corresponding to the beginning of the cohort 

observation, kε  a random term with zero mean value. In the case of rectangular region of 

investigations where Ii ,...,0= , Jj ,...,0=  (6) leads to matrix equation 

εBzh +=        (7) 

with B - matrix composed by 1th and 0th, ( )khh ,...,1=h , ( )ghz 0 |= , 

( ) ( ) ( )( )T
0h 1,0,...,0,0,...,0,1 ++= JhhIh , ( ) ( ) ( ) ( )( )Tg JIgIgJgg ,,...,0,,...,,0,...,0,0= , 

( )kεε ,...,1=ε , ( ) 0=εE , ( ) 0, =mlCov εε . Because of ill-posed nature of equation (5) 

solution of equation (7) is to be done with stabilization procedures. In the Method of 

Dynamic Regression two types of stabilization are implemented: smoothing and 

aggregation (Moltchanov et al., 2005).  

Smoothing is done by constrained minimization 

( ) ( )( ) min →−−= ∈ αLL z

TBzhBzhz  

{ }αα ≤= zBBzz TT
11:L , 



which leads to unconstrained minimization problem 

( ) ( )( ) min11 →+−−=
z

TTT zBBzBzhBzhz λλL . 

The matrix of the first differences can be used as stabilization matrix 
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Aggregation reduces the dimension of the problem by assigning the same values 

of cohort trends in several adjusted parallelograms. In this case 

Gfg =  

 with G - matrix composed by 1th and 0th with number of rows equal to length of vector 

g  and number of columns less than length of vector g , f  is vector of aggregated values 

for cohort trends. Recall that ( )gh BBB
0

=   and write  

GfBhB

gBhBBz

g0h

g0h

0

0

+=

+=
. 

Estimation of initial levels and cohort trends is doe by minimization of the functional 

( ) ( )( ) min →−−−−= f,h

T
g0hg0h 000
GfBhBhGfBhBhzGL . 

Smoothing can used in combination of aggregation as well. 

 

5 Survival in the wild nature 

In animals links between age and mortality, fecundity, disability can be made only 

in laboratory conditions, where the date of the animal birth is recorded. Survival in wild 

nature can be assessed only by observation in laboratory of life spans after moment of the 



animal capture. Under the hypotheses of stationarity of wild population the survival in 

wild and probability to survive x days in laboratory are linked by equation (4). This 

equation can be simplified under a hypothesis that mortality in laboratory does not differ 

from mortality in wild, which does not looks realistic but can be used as a starting point if 

the reference cohort is not available. Equation (4) reduces to 

( ) ( ) ( )daaS
e

daaxS
e

xP
x

wwc ∫∫ =+=
ωω

000

11
.   (8) 

It is easy to obtain by differentiation an analytical solution for this equation in form 

( ) ( ) ( )0/ ccw P
dx

d
xP

dx

d
xS =  . 

To estimate survival in wild one is to estimate the derivative from the probability to 

survive in laboratory in captured animals ( )xPc . This leads to unstable solution. Muller et 

al. (2004)  used non-parametric kernel density estimation for the derivative estimation 
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and estimation of its value 
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where **
1 ,..., nxx  is a sample of observed life spans after capture, ( )nh  is a sequence of 

proper selected values for bandwidth. The kernel functions were defined for the sample 

normalized at [-1,1] in the derivative estimation and [-1,0] in estimation the derivative 

value at x=0 ( ) ( )2175.0 xxK −=  , ( ) ( )( )5.01120 ++= xxxK . The asymptotic confidence 

intervals for the estimate are presented in Muller et al. (2004).  



The alternative way of estimation survival in the wild is numerical solution of 

equation (8) which leads to a matrix equation 

wc SP A=       (9) 

with triangular matrix 
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To investigate the solution of equation (9) a numerical investigation was done. The 

“survival in wild” was modeled by survival in reference cohort of flies reared in 

laboratory (J.Carey’s data). The graph for this survival is presented in figure 1 by empty 

circules. By multiplication this survival curve by matrix A the “survival among captured” 

has been produced. Small disturbances in this curve were added to simulate an effect of 

survival estimation by finite number of animals in captured group. Resulting survival 

curve is presented in figure 1 by crosses.  

Figure 1 presents the results of solution of equation (9) by regularization 

functional minimization 

( ) ( ) SSSPSPSJ cc BBAA TTT αα +−−=)(  

where B  is matrix of the first derivatives like matrix 1B  above. Dashed line in figure 1 

presents solution obtained for a=0.001. One can see instability in solution. Solid line in 

figure 1 presents solution obtained for a selected by statistical elimination criterion 

(Michalski, 1987). Procedure of the regularization parameter selection is as follows. 

Denote by α
wS  solution of the problem 



( ) min→
Sa SJ  

under fixed value for the regularization parameter α. The value for regularization 

parameter α is selected by minimization on α of an expression 

( ) ( ) ( ) 






 +−=
− TTT ABBAAA

1
Tr

2
1/ αα α

α m
SJI w . 

Minimization was done in the range of α where criterion I(a) is positive and α
wS  is 

monotone decreasing by age, m – number of rows in matrix A . 

 

6 Combination of demographic data with genetic data 

The notion inverse problem is conditional in a sense that there exists the other 

problem in respect to which the considering inverse problem is a forward problem. For 

example senescence can be considered as a cause for mortality increase with age, which 

has reflection in longevity. Senescence process in turn in significant proportion is 

determined  by genetics. In this example the same process can be the cause of some effect 

and the effect of some other cause. If we want to assess senescence based on longevity 

data we have an inverse problem with all troubles, related to instability of solution. 

Alternatively we can take into account the links between genetics and senescence and 

solve the problem in two steps. First on longevity data we estimate the proportions of 

different alleles in investigated group and then assess the conditions of health taking into 

account the estimated proportions. The large errors in estimates, made at the first step in 

solution of the inverse problem, may be not important in estimation of related health 

conditions and mortality. This leads to improvement in the result in comparison with 

solution, which does not take into account genetic information. 



The other possible effect of using genetic data is employment of genetic links 

between relatives which will stabilize the solution in comparison with the case when all 

members of a family are considered as independent persons. Combination of genetic and 

demographic data is considered in Yashin et al. (1998), Tan et al. (2004a, 2004b). 

Simulation studies were conducted in Begun and Yashin (2005). The results show big 

potential of combining data of different types.  

  

7 Conclusion 

Presented in the paper consideration of inverse problems in different branches of 

science demonstrate an example of a unified methodology, which can be effective in 

demography and biodemography. Implementation of inverse problem approach allows to 

improve the precision of traditional demographic methods and construct new models. 

This approach will be especially effective in solution of complex problems of regulation 

in human health and longevity, in investigation of links between longevity, genetics and 

environment conditions. 
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Figure 1. Survival in wild (open circuits), calculated and randomly disturbed survival 
among captured flies (crosses), estimate for survival in wild corresponding to small value 
for regularization parameter (dashed line),  estimate for survival in wild corresponding to 
selected value for regularization parameter (solid line). 
 

 

 

 

 


